DIRECT METHODS OF SOLVING LINEAR REVERSE
HEAT-CONDUCTION PROBLEMS

O. M. Alifanov UDC 526.24.02

Approximate analytical methods are proposed for solving reverse heat-conduction problems
for the case of a semiinfinitely large body and a plane layer with movable or stationary
boundaries. The applicability limits of the results are evaluated.

Reverse heat-conduction problems of the first kind are those where the thermal flux or the surface
temperature are to be determined from the known temperature inside the body. Despite the inherent in-
stability of such problems, in certain cases they can be solved by direct methods. We propose here to
determine the transient thermal fluxes by semianalytical methods based on the solution of integral equa-
tions.

We consider the second boundary-value problem of heat conduction for the case of a semiinfinitely
large body with a movable boundary:
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With the aid of the Kirchhoff transformation 6 = (1/Ay) 5 A(T)T, where A, denotes some constant,
problem (1)-(2) can be reduced to the form 0
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We will now assume that ¢ = const, This condition is either approximately or accurately enough
satisfied for certain metals and nonmetallic materials.

The solution to (3)-(4) will be expressed in terms of the thermal potential in a simple layer:
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The limit value obtained for the derivative of the thermal potential, as the boundary of the region is
approached from inside, will be determined according to the formula for a temperature jump [1], which
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in this case reduces to
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Let us approximate this expression. The heating period [0, 7] will be divided into n generally un-
equal intervals n =1, 2,..., m) End curves v(r) and X {r) will be replaced by a staircase so as to satisfy
the conditions v = (v + vj-1)/2, Xj = Kj + Xj-1)/2 on each segment. We then obtain the following expres-

sion for q(7):
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Noting that the limit
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The values of the thermal potential density v on the given time grid must be determined according to
(5) from the known temperature 0 (%1, 7) at point x = xq. An analogous approximation of (5) yields

O, (%) =Vb_ i;i(p:'l, (8
i=l

(P'," =] ’ Tn —T;_ l(D* [-—-x—-———‘— _-:-_X_‘__“ ——‘VT‘.‘ — T; i(D* [—x—;—xi:],
2 }a (Tn."'_Ti ..1) 2 Va(Tn_Ti)

where

iQ* [ul = V_IEeXP [—u?] —ull — @ (u)].

From (8) follows the recurrence relation between vy and e
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In the case of a stationary boundary, the determination of thermal fluxes becomes simpler. Omit-
ting here all intermediate transformations, we show the final result for a semiinfinitely large body with
X(r) =0 [2]:

1) with a staircase approximation of q(M)7
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fAnalogous expressions have been obtained in [3] and {4].
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2) with a piecewise~linear approximation of g(r)
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We next consider a plate which is heated (or cooled) on two sides with thermal fluxes q(7) and Qjp (7},
respectively, both varying with time. One boundary of this plate is movable and its displacement mode
X(r) is assumed known. The initial temperature distribution is constant and equal to Tj;. The temperature
distribution in the model is in this case described by the following system of equations;
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The solution to the forward heat-conduction problem is sought as the sum of thermal potentials in
a simple layer:
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For the thermal potential densities v; and v, corresponding to the two respective plate boundaries we
write the following system of integral equations
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We now approximate g(r) and qi,(7) in the same manner as before. As a result, we obtain
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The corresponding expression for the model temperature at the time 1y is
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We now assume that the relations T (x4, 7) and T (x,, 7) are known at two points of the plate. With the
aid of expression (15), it is then possible to write an algebraic system of equations for the thermal poten-
tial densities vy and vy:
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We change from variables v; and v, to thermal fluxes q and djn according to formulas (13) and (14).

If both plate boundaries are stationary, then the unknown thermal fluxes q and qjp are found (as can
be easily proved) as the solution to the following system of equations:
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where (cf. [5])
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When the back surface is thermally insulated, then the sought solution becomes simpler:

1

o= 7,
) (xlv T Tn—l)

n—1 .
{2 S G, T ) B, T, — )l B, (0) ()

and the temperature at one point x = x; needs to be known.

In practice it is often easier to measure the temperature of a thermally insulated surface. In this
case it is possible to obtain formulas not containing infinite series. Of basic importance in constructing
the algorithm here is the introduction of an auxiliary function g(r) which would be related to q(r) in a defi-
nite way through a continuous operator and which would be defined by a simple integral equation [61.

We select function g(r) defined by an integral equation analogous in form to Eq. (5). In the case of
an infinitely large plate it will then be possible to calculate the thermal flux by the main part of the algo-
rithm which had been designed for a semiinfinitely large body. We consider the following problem:
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We then perform the Laplace transformation:
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The solution to this problem is
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The transform expression for the thermal flux is
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From (20) and (21) follows
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We define the transformation of function g(r) as follows
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Reverting to the originals (22) and (23), we obtain an integral equation for g(r) as well as an equation
which relates functions q(r) and g(1):
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Equation (25) is identical in form to the integral equation for the thermal flux transmitted to a semi-
infinitely large body with a movable boundary. If the derivative d6 (0, 7)/dr is known, then determining the
function g(r) is completely analogous here to determining the function q(r) from the known temperature
6, 7). For instance, with the staircase approximation of g(r) we obtain
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Relations (9)-(11), (16)-(18), and (26) are approximation solutions to the Volterra integral equations of
the firstkind. This problem belongs to the category of improperly formulated ones. One may expect, there-
fore, that the resulting systems of linear algebraic equations (the recurrence formulas represent systems
with lower-order triangular matrices) will not be rational and their solutions will be unstable. Let us dis-
cuss the applicability of our results from the heuristic standpoint. At sufficiently small values of Xy, the
expression for the transient thermal flux is
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Since this expression does not contain derivatives d™T/dr™ and dq/dr™ of higher than the first order,
hence calculations based on it will be relatively stable. An analogous result has been obtained in [7] for
the case of a plate heated with a constant thermal ﬂuxq=cbnstatA Fo = 0.35-0.50 (depending on xy). If
now the entire heating period is divided into i intervals and g; = const is assumed on each, then we may
postulate that for AFo = 0.35-0.50 the problem of determining gj has been formulated rather rationally.
Indeed, in these cases the singularities of function q(r) are much less concealed and the solution to the
forward problem becomes regularized: ) ‘
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A similar relation applies also to a semiinfinitely large body [3].

For specific problems, stable approximations can be realized at much lower values of AFo. The
decisive factor here is the consistency of the input data and the distance of the point with a known tempera-
ture from the body boundary. Aun experiment must be simulated on the computer for every case. '

It is to be noted that, with our approach to solving reverse heat-conduction problems, a formal im-
provement of the accuracy of approximating the unknown functions q(r) and »(r) will make it feasible to
increase the time steps as the approximate limit of a stable solution is approached. For instance, the
critical time interval Arey will be larger with formula (11) than with formula (10).

On the whole, the described schemes for determining the boundary conditions are useful in cases
where the temperature input data are rather accurate, the temperature probes are located close to the
body boundary, and the boundary conditions need not be defined very precisely. For other cases the solu-
tions must be regularized [8, 9].

In the next article we will discuss direct numerical methods of solving nonlinear reverse heat-con-
duction problems and the effect which the quality of input data has on the accuracy and the stability of re-
sulting approximations.

NOTATION

is the thermal diffusivity;

is the plate thickness;

is the specific heat referred to volume;
is an auxiliary function;

is the thermal flux;

is the thermal flux at the inner wall;

is the temperature;

is the space coordinate of the movable body boundary;
is the local coordinate;

o is the Fourier number;

is the model temperature;

is the thermal conductivity;

is the thermal potential density;

is the time.
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